Bıyıklı Matematik – 9.Sınıf Matematik Fonksiyonlar Yeni Müfredat PDF
- Kategoriler Tüm İçerikler
9.Sınıf Matematik, Nicelikler ve Değişimler- Fonksiyonlar konu anlatımı PDF ders notunun ücretsiz konu anlatım videosunu Bıyıklı Matematik youtube kanalından izleyebilirsiniz.
2. TEMA: NİCELİKLER VE DEĞİŞİMLER
Bu temada öğrencilerin gerçek sayılarda f(x) = x şeklinde tanımlı doğrusal referans fonksiyondan hareketle doğrusal fonksiyonların nitel özellikleri hakkında muhakeme yapabilmeleri, mutlak değer fonksiyonlarını inceleyebilmek için doğrusal fonksiyonlara bağlı analojik akıl yürütebilmeleri ve doğrusal fonksiyonlarla ifade edilebilen denklem ve eşitsizlikleri içeren problemleri çözebilmeleri amaçlanmaktadır.
MAT.9.2.1.
Gerçek sayılarda f(x) = x şeklinde tanımlı doğrusal referans fonksiyonun nitel
özellikleri ile bu fonksiyondan türetilen g(x) = a ∙ f(x ± r) ± k, (a, r, k ∈ ℝ, a≠0) doğrusal fonksiyonların nitel özelliklerine ilişkin matematiksel muhakeme yapabilme
a) Doğrusal referans fonksiyonun nitel özelliklerini (tanım kümesi, görüntü kümesi,
işareti, artanlığı-azalanlığı, maksimum-minimum noktaları, sıfırları, bire birliği)
matematiksel temsilleri kullanarak belirler.
b) Doğrusal referans fonksiyonun nitel özellikleri ile matematiksel temsilleri arasındaki ilişkileri belirler.
c) Doğrusal referans fonksiyonu grafik veya cebirsel temsili üzerinde yapılan işlemlerle diğer doğrusal fonksiyonlara dönüştürür.
ç) Doğrusal referans fonksiyon ile elde ettiği doğrusal fonksiyonların grafik ve cebirsel
temsilleri arasındaki ilişkiyi ifade eder.
d) Doğrusal referans fonksiyonun nitel özelliklerinden hareketle diğer doğrusal fonksiyonların nitel özelliklerine ilişkin varsayımlarda bulunur.
e) Varsayımlarına dayalı olarak doğrusal fonksiyonların nitel özelliklerine ilişkin örüntüleri (cebirsel, sayısal veya grafiksel) geneller.
f) Genellemelerinin varsayımlarını karşılayıp karşılamadığını kontrol eder.
g) Genellemelerinden elde ettiği önermeleri uygun sözel veya sembolik dil ile sunar.
ğ) Elde ettiği önermelerin gerçek yaşam bağlamındaki kullanışlılığını değerlendirir.
h) Önermelerini grafiksel olarak doğrular veya cebirsel olarak ispatlar.
ı) İşe koştuğu doğrulama veya ispat yöntemlerinin farklı durumlardaki kullanışlılığını
değerlendirir.
MAT.9.2.2.
Gerçek sayılarda f(x) = ± |ax ± b| ± c (a, b, c ∈ℝ, a ≠ 0) şeklinde tanımlı mutlak
değer fonksiyonlarının nitel özelliklerini incelemek için doğrusal fonksiyonlara bağlı
analojik akıl yürütebilme
a) Gerçek sayılarda f(x) = x şeklinde tanımlı doğrusal referans fonksiyon ile g(x) = ± |x|
fonksiyonu arasındaki ve gerçek sayılarda tanımlı bir h doğrusal fonksiyonu ile
k (x) = ± |h(x)| ± c (c ∈ℝ) şeklinde tanımlı mutlak değer fonksiyonu arasındaki
cebirsel ve grafiksel benzerlikleri, farklılıkları gözlemler.
b) Gözlemlerinden yola çıkarak gerçek sayılarda f(x) = ± |ax ± b| ± c (a, b, c ∈ ℝ, a ≠ 0)
şeklinde tanımlı mutlak değer fonksiyonunun nitel özelliklerini tespit eder.
c) Tespit ettiği nitel özelliklerinden hareketle gerçek sayılarda
f(x) = ± |ax ± b| ± c (a, b, c ∈ ℝ, a ≠ 0) şeklinde tanımlı mutlak değer fonksiyonunun
parçalı gösterimine yönelik çıkarımlarda bulunur
MAT.9.2.3.
Doğrusal fonksiyonlarla ifade edilebilen denklem ve eşitsizlikler içeren problem çözebilme
a) Doğrusal fonksiyonlarla ifade edilebilen denklem ve eşitsizliklere ilişkin bileşenleri
(denklemi oluşturan fonksiyonların nitel özellikleri ile cebirsel ve grafik temsilleri)
belirler.
b) Doğrusal fonksiyonlarla ifade edilebilen denklem ve eşitsizliklere ilişkin matematiksel bileşenlerin aralarındaki ilişkileri belirler.
c) Doğrusal fonksiyonlarla ifade edilebilen denklem ve eşitsizliklerin problem bağlamındaki temsillerini farklı temsillere dönüştürür.
ç) Dönüştürdüğü temsillerin problem bağlamındaki anlamını ifade eder.
d) Elde ettiği ve yorumladığı farklı temsillere dayalı olarak problemin çözümü için strateji
oluşturur.
e) Belirlediği stratejiyi kullanarak problemi çözer.
f) Elde ettiği çözümü uygun yöntemleri seçerek doğrular.
g) Problemin olası çözüm stratejilerini gözden geçirir.
ğ) Problemin olası çözüm stratejilerine dayalı olarak çıkarımlar yapar.
h) Çıkarımlarının geçerliliğini sözel, cebirsel ve grafiksel argümanlarla değerlendirir.